Structural and Mechanical Properties Al₂O₃-ZrO₂ Dental Bioceramics

Tanzila Parvin¹, M. A. H. Bhuiyan², M. A. Hakim³, M. A. Gafur,⁴ SM Muraduzzaman¹

¹Bangladesh University of Health Sciences, Dhaka, Bangladesh

² Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh ³ Department of Glass and Ceramic Engineering, , Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

⁴ PP and PDC, BCSIR, Dhaka-1000, Bangladesh

Abstract- Alumina (Al_2O_3) and Zirconia (ZrO_2) was introduced as a ceramic material for implant abutments because of its superior mechanical properties. With this introduction, a composite ZrO_2 toughened Al_2O_3 (ZTA) is widely used as ceramic abutment. In the present study, samples of Al_2O_3 with varied ZrO_2 (10-40 wt %) were prepared. Samples were sintered at temperature 1550, 1600 and 1650 °C for 2 hours. The density, porosity, structural properties and mechanical properties of Al_2O_3 - ZrO_2 composites with respect to ZrO_2 content as well as sintering temperature have been explored in the present work. About 22% higher density of ZTA composite has been achieved and the microstructures are highly homogeneous and finer with less porosity when compared to pure Al_2O_3 . For pure Al_2O_3 the microhardness number is in the range 18-24 GPa while the decreasing of hardness value has been observed with the addition of ZrO_2 content. The lower hardness values imply that this system can achieve higher fracture toughness as it is known that fracture toughness and microhardness number has an inverse relation. The approach adopted in the present study may provide an alternative to design Al_2O_3 - ZrO_2 composites with improved mechanical properties.

Index terms- Alumina, Zirconia, composite, toughened, sintering, porosity, hardness, microstructures

1. Introduction

Biomaterials used to replace part of a living system or to function in intimate contact with living tissue have made a revolution in medical application as well as research area. Materials which are to be implanted into the human body are subjected to an environment which is both hostile and at the same time extremely sensitive. There is a crucial fact that the body's tissues are extremely sensitive to foreign material and are very easily stimulated into showing signs of poisoning and rejection. Thus, the success of an implant in the body depends on several factors, such as the materials properties, the design, the biocompatibility as well as other factors out of engineer control, including the technique used by the surgeon, the health of the patient, and his activities. Bioceramics have become an accepted group of materials for medical applications, mainly for implants in orthopaedics, maxillofacial surgery and for dental implants.

Dental bioceramics are very attractive because of their biocompatibility, long term color stability i.e. their aesthetics and their ability to be formed into precise shapes. The most widely used dental bioceramics materials are Alumina (Al₂O₃) and Zirconia (ZrO₂), because of their excellent biocompatibility as well as suitable mechanical properties. [1]

Al₂O₃ is one of the more widely used and studied advances ceramic materials. Using pure Al₂O₃ in dental application, one of drawbacks is that it exhibits low flexural strength and toughness. [1] There are many ways to overcome this weakness, including making it as composite materials. Composite means consisting of two or more distinct parts or phases. Addition of ZrO₂ to Al₂O₃ allows to receive ZrO₂ toughened Al₂O₃ (ZTA) ceramics, in which the strength and toughness have been improved due to stress induced tetragonal-monoclinic transformation. ZrO₂ is inert in physiological environment, presents greater flexural resistance and toughness and lower Young's modulus when compared with pure Al₂O₃... It is generally known that Al₂O₃ – ZrO₂ composites have better mechanical properties than Al₂O₃ and ZrO₂ because of the dispersion of metastable tetragonal zirconia particles in the alumina matrix, which transform into the stable monoclinic phase under loading. The properties of these materials are determined by their microstructures; therefore, to control their microstructural development and to achieve fine microstructures, the sintering parameters must be optimized. Since both Al₂O₃ and ZrO₂ are biocompatible, this could prove to be a new approach to dental abutments.

The objective of the present work was to analyze the physical, structural and mechanical properties of Al_2O_3 - ZrO_2 composites prepared by solid state technique where ZrO_2 content has been varied. To do so, density, porosity, elastic modulus, structural properties and mechanical properties of Al_2O_3 - ZrO_2 composites with respect to ZrO_2 content as well as sintering temperature (Ts) have been explored.

2. Materials & Methods

2.1 This study was conducted in the department of Physics at Bangladesh University of Engineering & Technology during the period of 2008-2012.

2.2 Experimental Procedure:

The starting materials, powders of Al₂O₃ and ZrO₂ with purity 99.6% and 99.9% respectively were used in this work. Powders of Al₂O₃ and ZrO₂ were collected from Material Science Division of Bangladesh Atomic Energy Commission, Dhaka, Bangladesh. The average particle size was 150nm for Al₂O₃ and 30-60 nm for ZrO₂. Different compositions had been prepared by varying ZrO₂ from 0 to 40 wt. %. Thus four composites with 10, 20, 30 and 40 wt.% of ZrO₂ were prepared. A pure Al₂O₃ sample was also prepared to compare its properties with those of ZTA composites. In doing so, dry mixing for 05(Five) hours was carried out to obtain a homogeneous distribution and after that wet milling was carried out for 12 hours in pure acetone media in a motor driven ball mill. The green body (bulk sample) in the form of tablet of about 10 mm in diameter dimension was prepared by uniaxial compaction procedure. Polyvinyl alcohol (PVA) was used as a binder. The green body was sintered at low temperature to burn off the binder at 950 °C with heating rate 6 °C/min. Finally, the samples were sintered with a microprocessor controlled muffle furnace at temperatures 1550, 1600 and 1650 °C for two hours.

The bulk density (ρ) of the sintered sample was calculated from the ratio weight/volume and the theoretical density (ρ) was calculated from the actual density of the starting powders and their weight percentages using the rule of mixtures. The percentage of total porosity ϕ was calculated from the ρ and ρ according to the standard formula [2]:

To analyze the microstructure, Scanning Electron Microscopes (SEM) of model Philips XL-30, was used.

Identification of sintered sample phases was carried out by X-Ray Diffraction (XRD) technique using X-ray diffractometer of model: D8 ADVANCE, BRUKER, Germany. The data was collected on the 2θ range from 20° to 85° with a step of 0.02° and 0.6 sec of exposure time per position.

The microhardness was determined by using Vickers microhardness tester of model HMV 2, Shimadzu Corporation using an applied load of 2 kg for 6 sec. Vickers microhardness can be measured using the following formula **[1,3]**:

Where, *H_v* = Vickers microhardness (GPa) F = Applied load (N)

d = Arithmetic mean of the two diagonal length of the indentations (mm).

3. Result and discussion

3.1 Density

In presence of ZrO₂ resulted in a continuous increase in density and denser structure (Fig.1). This can be described in the term of the density of each component. The density of ZrO₂ is around 6.58 g/cm⁻³ whereas that of Al₂O₃ is 3.97 g/cm⁻³, therefore the effective density values of the alumina-zirconia rise with increasing ZrO₂ content and a compact structure is formed. It has also been observed that with the increase of sintering temperature (T_s), density was increased slightly. About 2-3% of density increases with 100°C increase in T_s. In this work about 97% of theoretical density calculated from rule of mixture was achieved for pure Al₂O₃ and 97-98% of theoretical density was achieved for ZTA sintered at 1650 °C for 2 hours. The density value conforms to some previous works those used pressure less sintering technique **[4-6]**. The optimum density was also achieved for ZTA sintered at 1650 °C. Density of ZTA containing 40 wt% ZrO₂ was 22% higher than pure Al₂O₃. This is caused by the lowering of t-ZrO₂ phase at higher content of ZrO₂. The decrease in t-ZrO₂ phase or simultaneous increase in m-ZrO₂ phase may be explained by a rapid

increase in grain size of zirconia particles. However, the very fast grain growth rate has a detrimental effect on the density, since pore coalescence in alumina matrix and segregation of zirconia particles takes place [12].

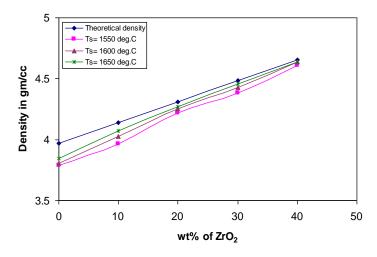


Fig 1: Effect of ZrO2 content on density of ZTA ceramics

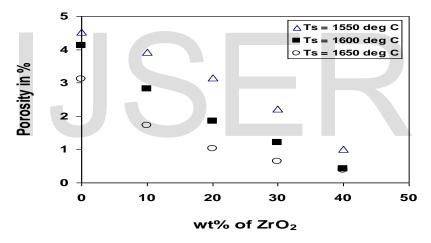


Fig 2: Effect of ZrO2 content on porosity of ZTA ceramics

The densification process can also be described from the calculated result of porosity. It is observed that the porosity is decreased as ZrO_2 content as well as T_s increases (Fig.2). Due to the diffusion process during sintering, the pores of composite diminish or even close by the introduction of defects, resulting in reduction of porosity, improvement of densification of the composite as well as its mechanical properties. That is why the composite becomes more homogeneous with less porosity at higher T_s and also with the increased ZrO_2 content.

3.2 Microstructure

The influence of microstructure uniformity on mechanical properties has a great importance. From microstructures at different sintering temperatures (Fig.3) it can be observed that the microstructures are highly homogeneous without agglomerates, pores or abnormally grown alumina grains.

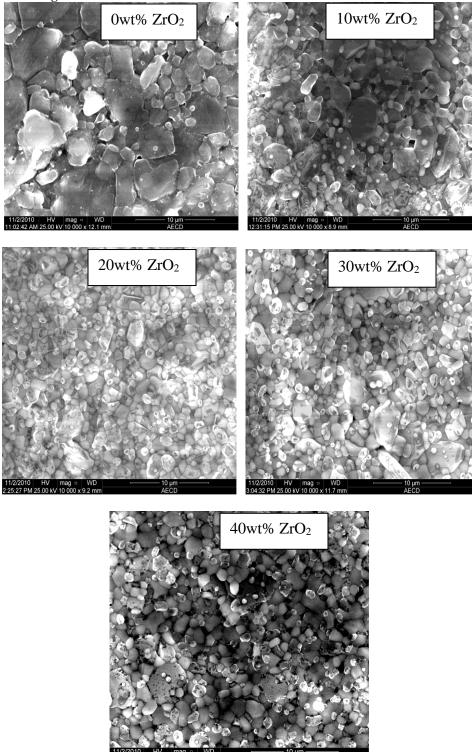


Fig.3: Microstructure of Al₂O₃ - ZrO₂ Composite sintered at T_s = 1600 °C

It is observed that the microstructures become highly homogeneous and finer at higher sintering temperature. It can also be observed that the grain sizes of ZrO₂ increase and hinders the grain growth of Al₂O₃ at 1650 °C compared to that at 1600 °C, which

contributes to the lowering of porosity (Fig.4). A fine grain size and refined microstructure are necessary for improved mechanical properties especially for wear resistance of dental implant.

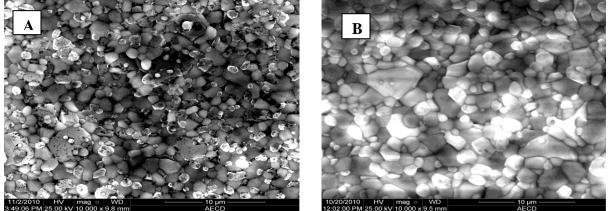


Fig. 4: ZTA composite with 40 wt% ZrO₂ at Ts = 1600 $^{\circ}$ C (A) and ZTA at Ts = 1650 $^{\circ}$ C (B)

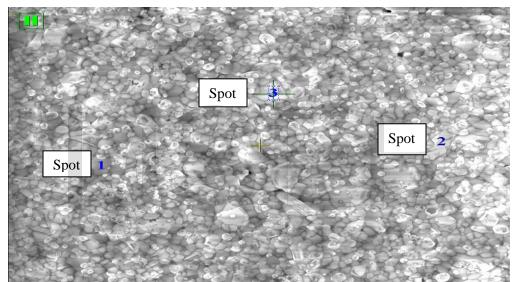


Fig. 5.1: SEM Micrograph for EDX analysis of ZTA composite (70% Al₂O₃ + 30% ZrO₂) sintered at 1600 °C

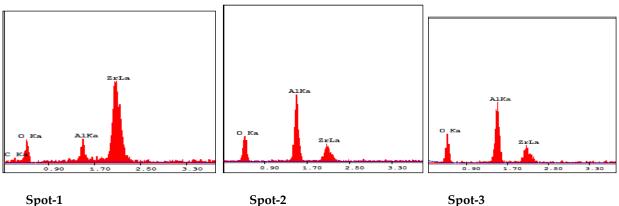


Fig. 5.2: EDX analysis of ZTA composite (70% Al₂O₃ + 30% ZrO₂) sintered at 1600 °C

From EDX analysis shown in fig. 5.1 & 5.2 it is confirmed that the dark areas represent ZrO_2 while white areas indicate Al_2O_3 matrix. Therefore from fig. 3, it can also be observed that ZrO_2 particles are uniformly dispersed throughout the alumina matrix. As the amount of ZrO_2 content increases, the Al_2O_3 grain size decreases significantly. The ZrO_2 phase creates a pinning effect around Al_2O_3 grain and obstructs its growth. ZrO_2 has quite small grain. When ZrO_2 is added with Al_2O_3 , evenly distributed fine

ZrO₂ grains act as grain refiner and led to smaller Al₂O₃ grains. This is possibly increases density as well as enhances mechanical properties.

3.3 X-Ray Diffraction Analysis

XRD analysis of the samples indicated that only α -Al₂O₃, t and m- ZrO₂ are the crystalline phases present in both the pure Al₂O₃ and in the ZTA composites, Fig. 6(a). It is observed that with the increase of ZrO₂ content the m- ZrO₂ phase increases and the t-ZrO₂ phase decreases. However, t- ZrO₂ retention becomes much easier to trigger the transformation to monoclinic. As a result, its contribution to transformation toughening predominates. The extent of toughening achieved in this composite depend on the particle size of Al₂O₃ and ZrO₂, volume fraction of ZrO₂ retained in the metastable tetragonal phase as well as on the relative distribution of Al₂O₃ and ZrO₂ in the matrix **[7]**. Finer particle size of both Al₂O₃ and ZrO₂ will not only enhance the chances of a uniform Al₂O₃ and ZrO₂ distribution, it also increases the possibility of ZrO₂ being retained as metastable tetragonal phase **[8]**.

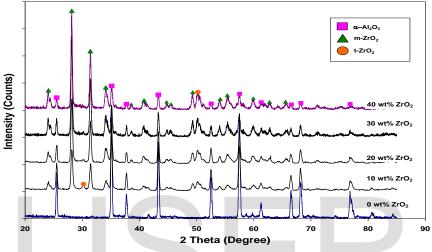


Fig.6(a) XRD pattern of ZTA ceramics containing different vol.% ZrO₂ and sintered at 1600 °C for 02 hours investigated in present work

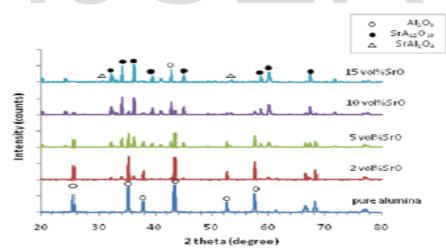


Fig.6(b) Some standard XRD patterns found in the works of some researchers [6]

The XRD patterns of present study were also compared with some standard patterns found in the works of some researchers, Fig. 6(b) **[6].** From this earlier work, it was observed that a characteristic sharp peak of tetragonal zirconia was found in the XRD patterns at $2\theta = 30^{\circ}$. This peak is also found in the present work, Figs 6(a) but with the increase of ZrO₂ content, this peak is diminished. So it can be said that tetragonal phase is indeed retained at the room temperature as a metastable phase due to the presence of the hard alumina matrix around, and this phase is responsible for fracture toughness improvement by transformation toughening mechanism.

In earlier works it was also described that in Al_2O_3 - ZrO_2 composites, the tetragonal phase was stable at room temperature only if the ZrO_2 grain size lies between two critical values (from about 0.1 µm up to 0.5 µm), which depend on strains in the Al_2O_3 matrix and on the amount of ZrO_2 [9]. The fraction of tetragonal phase increases when the quantity of ZrO_2 decreases (30% of tetragonal phase for 5 vol.% of ZrO_2 , but only 5% of tetragonal phase for 20 vol.% of ZrO_2 [10, 11].

3.4 Microhardness

As it is observed from micrographs that the grain size is increased with Ts, it can be concluded that higher sintering temperature gives lower hardness values (Fig. 7a). It has been noticed that the investigated ZTA composites obey Hall–Petch relationship which states that microhardness decreases with increasing particle size.

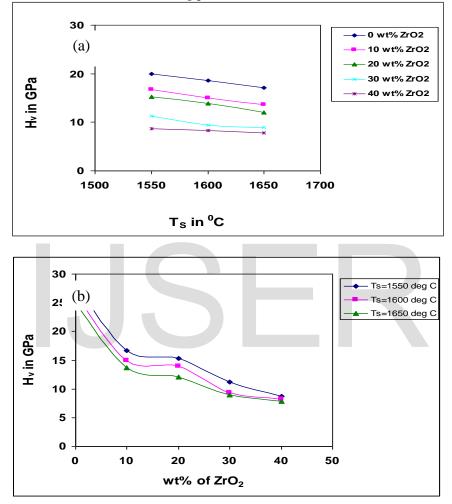


Fig. 7: Effect of sintering temperature (Ts) on hardness of ZTA composite (a) Effect of ZrO₂ content on hardness of ZTA ceramics (b)

Moreover, the microhardness of the ZTA composite decreases with the addition of ZrO₂ shown in Fig. 7 (b) as Al₂O₃ is harder than ZrO₂. Higher amount of ZrO₂ has an adverse effect on the microhardness of the composites due to coarsening of the ZrO₂ grains and formation of subsequent porosity. However, below a critical grain-size, hardness decreases with decreasing grain size. This is known as the inverse Hall-Petch effect.

4. Conclusions

A variation in physical and mechanical properties of Al₂O₃ with the addition of ZrO₂ has been focused in the present work. The analysis has shown that the addition of ZrO₂ promotes composites with higher densities. So a greater strength of Al₂O₃ can be achieved by using proper amount of ZrO₂ with Al₂O₃. ZrO₂ grains acted as grain refiner which is necessary for improved mechanical properties especially for wear resistance of dental implant. Partially stabilized ZrO₂ shown in XRD analysis can enhance toughness of composite via phase transformation mechanism. These composites seem to be an adequate material to be

IJSER © 2019 http://www.ijser.org

used in the manufacture of implant abutments instead of the pure oxides actually in use. The relatively lower microhardness values can be suitable for ceramic abutments in the attainment of their final form by machining. The approach adopted in the present study may provide an alternative to design Al₂O₃- ZrO₂ composites with improved mechanical properties.

References

- [1] Maria Cecilia, Carlos Nelson EliasI, Jamil Duailibi FilhoII; Leandra Guimarães de OliveiraII, "Mechanical properties of Al2O3- ZrO2 composites for ceramic abutments", Mat Res, Vol. 7, No. 4, pp 643-649, 2004
- [2] Willi Pabst, Eva Gregorova, Gabriela Ticha, Eva Tynova, "Effective Elastic Properties of Al2O3 ZrO2 Composite Ceramics Part 4. Tensile Modulus of Porous Al2O3 and ZrO2", Ceramics Silikáty Vol. 48, No. 4, pp 165-174, 2004
- [3] Santos C., Souza R.C., Daguano J.K.M.F., Elias C.N., Rogero S.O., "Development of ZrO2 -Al2O3 Composite", The 51st Brazilian Congress on Ceramics, 2007
- [4] Maca, K., Pouchly, V. and Shen, Z. J., "Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics", Integrated Ferroelectrics, Vol. 99, pp 114–124, 2008.
- [5] Bodisova, K. and Sajgalik, P., "Two-stage sintering of alumina with submicrometer grain size", J. Am. Ceram. Soc., Vol. 90, pp 330–332, 2007
- [6] Theeranee Oungkulsolmongkol, Pantip Salee-Art and Wantanee Buggakupta, "Hardness and Fracture Toughness of Al2O3 -Based Particulate Composites with ZrO2 and Strontia Additives", J. Met., Mat. Min., Vol. 20, No.2, pp.71-78, 2010
- [7] Bleier A., Becher P.F., Westmoreland C.G and Alexander K.B., "Effect of aqueous processing conditions on the microstructure and transformation behavior in Al2O3 – ZrO2 (CeO2) composites", J. Am. Ceram. Soc., Vol. 75, pp 2649-58, 1992
- [8] Garvie R.C., "Occurrence of metastable tetragonal zirconia as a crystallite size effect", J. Phys. Chem., Vol. 69, pp 1238-43, 1965
- [9] Heuer A.H., Claussen N., Kriven W.M. and Rühle M., "Stability of tetragonal ZrO2 particles in ceramics matrices." J. Am. Ceram. Soc. Vol. 65, No. 12, pp 642–650, 1982
- [10] Claussen N. and Jahn J., "Transformation of tetragonal ZrO2 particles in a ceramic matrix.", Ber. Dtsch. Keram. Ges. Vol. 55, No. 11, pp 487–491, 1978
- [11] Kagawa M., Kikuchi M., Syono Y. and Nagae T., "Stability of ultrafine tetragonal ZrO2 coprecipitated with Al2O3 by the Spray-ICP technique.", J. Am. Ceram. Soc. Vol. 66, No. 11, pp 751–754, 1983
- [12] D. Sarkar, S. Adak, S.J. Cho, M.C. Chu, N.K. Mitra, "Influence of ZrO2 content and grain size on the thermo-mechanical properties of nano-ZTA", Ceram. Int., doi:10.1016/j.ceramint.2005.09.012.